

□ What is resistance?

O Impossible directly to predict the resistance of a ship in sailing.

O Indirect prediction of the ship resistance in sailing.

-
$$\eta_D = \frac{EHP}{DHP} = \frac{R \cdot V}{2\pi \cdot n \cdot Q}$$

- $R = (1-t) \cdot T$
- □ How to predict resistance?
 - **O** Experiment or CFD based on the Froude's hypothesis
 - **O** Coordinate system

Moving ship

Towing tank experiment

Fixed ship

Circulating experiment, CFD

- □ Prediction of resistance performance in calm water at model scale
 - **O** Total resistance (C_{TM}): Exp.
 - 3-D analysis method (ITTC-78 method)

Resistance characteristics using viscous and potential flow solvers

- Prediction of resistance performance in calm water at model scale
 - **O** Total resistance (C_{TM}): Exp.
 - Form factor (1+k): Prohaska's method (1966)
 - Assumption: $C_R(F_N) \sim a \cdot F_N^n$ in low speed range

- $C_{TM} = (1+k) \cdot C_{FMO} + a \cdot F_N^n \text{ or } \frac{C_{TM}}{C_{FMO}} = (1+k) + a \cdot \frac{F_N^n}{C_{FMO}}$
- Note that
 - **①** Separation on a model may give too high a form factor.
 - ② Laminar flow on a model may give too low a form factor.
 - **③** Wave braking may disturb the linearity of the resistance coefficient.
 - (4) A bulb may also disturb the linearity.
 - **(5)** Interaction between propeller and hull may influence the form factor.
 - **(6)** It may difficult to take the appendage into account.
 - **⑦** Tank blockage may influence the form factor.
 - (8) The form factor is dependent on the F_N .
 - (9) The form factor may be dependent on the R_N .

- Prediction of resistance performance in calm water at model scale
 - **O** Viscous resistance (*C_{VM}*): CFD
 - Assumption: Total resistance of a double-body model is equal to the viscous resistance (OE, 2010).

 $C_{VM}(R_N) = (1+k)C_{FMO}$

Scale effect of form factor (ICNSH, 2003)

 $1 + k = (1 + k^{(F)}) + k^{(P)}$

Table A Comparison of form-factor components

R_N	1.111×10^{6}	6.831×10^{6}	2.151×10^{9}
$1 + k^{(F)}$	0.943	0.991	1.165
$k^{(P)}$	0.196	0.194	0.197
1 + k	1.140	1.185	1.363

Resistance characteristics using viscous and potential flow solvers

Prediction of resistance performance in calm water at model scale

- **O** Total resistance (C_{TM}): CFD
 - $C_{TM} = \iint_{S} (c_p \cdot n_x + c_{fx}) \cdot dS = C_{TM}^{(P)} + C_{TM}^{(F)}$

□ Prediction of resistance performance in calm water at model scale

- **O** Wave-making resistance (C_W): Potential-flow solver
 - $C_W = \iint_S c_p \cdot n_x \, dS$

- □ Prediction of resistance performance in calm water at model scale
 - **O** Relationship between resistance components

□ Future works

- **O** Program debugging and making manual of potential solver (PotWave)
- **O** Objective ships: KVLCC2 and KCS
- **O** Computations:
 - Potential flow solver
 - Viscous flow solver: Double-body and free-surface models
- **O** Experiments (PNU, KRISO, HMRI, ...)
 - Attached rudder or not?
- **O** Relationship between resistance components
 - $C_W + C_{TM}^{(P_V \dot{b})} = C_R^{(P)} + k^P \cdot C_{FMO} \Rightarrow C_W > C_R^{(P)} \text{ since } C_{TM}^{(P_V \dot{b})} < k^P \cdot C_{FMO}$
 - $C_R^{(F)} + (1 + k^F) \cdot C_{FMO} = C_{TM}^{(F)}$ \rightarrow Scale effect of C_R since $(1 + k^F) \cdot C_{FMO} \neq C_{TM}^{(F)}$
 - $1 + k = (1 + k^{(F)}) + k^{(P)} \rightarrow \text{Scale effect of } (1+k) \text{ since } k^F \neq 0$
 - Full scale prediction method:

$$C_{TS} = \frac{S_S + S_{BK}}{S_S} \left[(1 + k) \cdot C_{FS} + \Delta C_F \right] + C_R + C_{AA}$$

Resistance characteristics using viscous and potential flow solvers

